top of page

THE SCIENCE

The Neubie is a breakthrough neuromuscular electrical stimulation (NMES) device utilising direct current.

The Neubie® is a device that uses an updated form of neuromuscular electrical stimulation (NMES) to send electrical impulses through the skin to the nerves, resulting in muscle contractions and sensory impulses*1,2.

The NMES technology imitates the action potentials of both the peripheral and central nervous systems, allowing for communication with virtually all parts of the body*3. The impulses stimulate muscle and other tissues, including contractile and sensory muscle fibers and sensory and motor neurons. The stimulation also leads to increased blood flow in the areas where it’s applied*2-7.

Enhance Long-term Outcomes

Using NMES in training and therapeutic rehabilitation programs can improve long-term outcomes by supporting the adaptation of cells in muscles, blood vessels, and nerves*8. This technology has been successfully used in clinical settings to treat a range of conditions, such as orthopedic problems*1,9,10, neurological conditions like stroke and spinal cord injury*18-23, and to enhance overall fitness and health through training regimens*24-30.

Neubie's DC Technology

The Neubie is a unique NMES device for several reasons. It uses pulsed direct current (DC) instead of alternating current (AC), which has been shown to have numerous positive biological effects, including the acceleration of the body's own healing and repair processes*31-36 as well as unique effects on nervous system function*36-39. Most other NMES devices use AC, which are cheaper and easier to engineer but do not have the same effects at the cellular level.

DSCF9428-01.jpeg

The Neubie's DC technology allows practitioners to use an "input-based" approach to rehabilitation and training by sending inputs into tissue that can influence the body's outputs and responses to stimuli. DC also allows for more specific contractile movement at higher amplitudes and has a longer phase duration, requiring less intensity to evoke an action potential, and making it more useful and efficient for training and rehabilitation. It can also activate denervated muscles, which requires a longer pulse length that can only be achieved with DC*40. In the past, the power of DC devices has been limited due to the potential for charge buildup and skin irritation, but the Neubie includes an additional waveform that dissipates heat and charge buildup, allowing for higher-intensity stimulation without irritation.

Neubie and NeuFit System

The Neubie is often used in combination with the NeuFit System for neuromuscular re-education. This system is based on research demonstrating that electrical stimulation can impact reflex patterns*40-43, brain activity*44-47, muscle output*48,49, and pain*49-52. Unlike traditional e-stim treatments, which involve passive acceptance of the current while lying down, treatments with the Neubie and NeuFit System are active, allowing for movement and optimal eccentric contractions. These contractions have been shown to be crucial for effective rehabilitation*53-55. The combination of the Neubie and NeuFit System generates neuromuscular adaptations while allowing for the adjustment of motor control in voluntary movement, leading to greater induction of muscular adaptations, improved performance of complex dynamic movements, and faster recovery of muscle contractility and functional abilities*56.

    1. Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve. 2007 May;35(5):562-90. doi: 10.1002/mus.20758. PMID: 17299744.

    2. Kato T, Sasaki A, Yokoyama H, Milosevic M, Nakazawa K. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Exp Brain Res. 2019 Dec;237(12):3195-3205. doi: 10.1007/s00221-019-05660-6. Epub 2019 Oct 10. PMID: 31602493; PMCID: PMC6882749.

    3. Carson RG, Buick AR. Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol. 2019 Sep 8. doi: 10.1113/JP278298. Epub ahead of print. PMID: 31495924.

    4. Cabric M, Appell HJ, Resic A. Stereological analysis of capillaries in electrostimulated human muscles. Int J Sports Med. 1987 Oct;8(5):327-30. doi: 10.1055/s-2008-1025678. PMID: 3679647.

    5. Pette, D. and Vrbová, G. (1999), What does chronic electrical stimulation teach us about muscle plasticity?. Muscle Nerve, 22: 666-677. https://doi.org/10.1002/(SICI)1097-4598(199906)22:6<666::AID-MUS3>3.0.CO;2-Z

    6. Salmons S, Vrbová G. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol. 1969 May;201(3):535-49. doi: 10.1113/jphysiol.1969.sp008771. PMID: 5767881; PMCID: PMC1351409.

    7. Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011 Oct;111(10):2399-407. doi: 10.1007/s00421-011-2128-4. Epub 2011 Aug 26. PMID: 21870119.

    8. Vanderthommen M, Duchateau J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev. 2007 Oct;35(4):180-5. doi: 10.1097/jes.0b013e318156e785. PMID: 17921786.

    9. Avramidis K, Karachalios T, Popotonasios K, Sacorafas D, Papathanasiades AA, Malizos KN. Does electric stimulation of the vastus medialis muscle influence rehabilitation after total knee replacement? Orthopedics. 2011 Mar 11;34(3):175. doi: 10.3928/01477447-20110124-06. PMID: 21410130.

    10. D.T. Demircioglu, N. Paker, E. Erbil, D. Bugdayci, T.Y. Emre, The effect of neuromuscular electrical stimulation on functional status and quality of life after knee arthroplasty: a randomized controlled study, Journal of physical therapy science, 27 (2015) 2501-2506.

    11. A.K. Klika, G. Yakubek, N. Piuzzi, G. Calabrese, W.K. Barsoum, C.A. Higuera, Neuromuscular Electrical Stimulation Use after Total Knee Arthroplasty Improves Early Return to Function: A Randomized Trial, The journal of knee surgery, DOI 10.1055/s-0040-1713420(2020).

    12. R. Delanois, N. Sodhi, A. Acuna, K. Doll, M.A. Mont, A. Bhave, Use of home neuromuscular electrical stimulation in the first 6 weeks improves function and reduces pain after primary total knee arthroplasty: a matched comparison, Annals of translational medicine, 7 (2019) S254.

    13. Lake DA. Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med. 1992 May;13(5):320-36. doi: 10.2165/00007256-199213050-00003. PMID: 1565927.

    14. Paillard T. Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Med. 2008;38(2):161-77. doi: 10.2165/00007256-200838020-00005. PMID: 18201117.

    15. Nussbaum EL, Houghton P, Anthony J, Rennie S, Shay BL, Hoens AM. Neuromuscular Electrical Stimulation for Treatment of Muscle Impairment: Critical Review and Recommendations for Clinical Practice. Physiother Can. 2017;69(5):1-76. doi: 10.3138/ptc.2015-88. PMID: 29162949; PMCID: PMC5683854.

    16. Hauger AV, Reiman MP, Bjordal JM, Sheets C, Ledbetter L, Goode AP. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg Sports Traumatol Arthrosc. 2018 Feb;26(2):399-410. doi: 10.1007/s00167-017-4669-5. Epub 2017 Aug 17. PMID: 28819679.

    17. Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee. 2015 Jun;22(3):270-7. doi: 10.1016/j.knee.2014.11.013. Epub 2014 Dec 10. PMID: 25819154; PMCID: PMC4754794.

    18. Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA. Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking? Arch Phys Med Rehabil. 2018 Apr;99(4):806-812. doi: 10.1016/j.apmr.2017.10.028. Epub 2017 Dec 9. PMID: 29233625

    19. Knutson JS, Fu MJ, Sheffler LR, Chae J. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys Med Rehabil Clin N Am. 2015 Nov;26(4):729-45. doi: 10.1016/j.pmr.2015.06.002. Epub 2015 Aug 14. PMID: 26522909; PMCID: PMC4630679.

    20. Chandrasekaran S, Davis J, Bersch I, Goldberg G, Gorgey AS. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regen Res. 2020 Aug;15(8):1397-1407. doi: 10.4103/1673-5374.274326. PMID: 31997798; PMCID: PMC7059583.

    21. Carnaby GD, LaGorio L, Silliman S, Crary M. Exercise-based swallowing intervention (McNeill Dysphagia Therapy) with adjunctive NMES to treat dysphagia post-stroke: A double-blind placebo-controlled trial. J Oral Rehabil. 2020 Apr;47(4):501-510. doi: 10.1111/joor.12928. Epub 2020 Jan 19. PMID: 31880338; PMCID: PMC7067660.

    22. Stein RB , Chong SL, James KB, et al. . Electrical stimulation for therapy and mobility after spinal cord injury. Prog Brain Res.2002 ;137:27–34.

    23. Belanger M , Stein RB, Wheeler GD, et al. . Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil.2000 ;81:1090–1098.

    24. Wakahara T, Shiraogawa A. Effects of neuromuscular electrical stimulation training on muscle size in collegiate track and field athletes. PLoS One. 2019 Nov 13;14(11):e0224881. doi: 10.1371/journal.pone.0224881. PMID: 31721812; PMCID: PMC6853328.

    25. Gondin J, Cozzone PJ, Bendahan D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur J Appl Physiol. 2011 Oct;111(10):2473-87. doi: 10.1007/s00421-011-2101-2. Epub 2011 Sep 10. PMID: 21909714.

    26. Gondin J, Brocca L, Bellinzona E, D'Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol (1985). 2011 Feb;110(2):433-50. doi: 10.1152/japplphysiol.00914.2010. Epub 2010 Dec 2. PMID: 21127206.

    27. Jandova T, Narici MV, Steffl M, Bondi D, D'Amico M, Pavlu D, Verratti V, Fulle S, Pietrangelo T. Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People. Life (Basel). 2020 Sep 8;10(9):184. doi: 10.3390/life10090184. PMID: 32911678; PMCID: PMC7554879.

    28. Mancinelli R, Toniolo L, Di Filippo ES, Doria C, Marrone M, Maroni CR, Verratti V, Bondi D, Maccatrozzo L, Pietrangelo T, Fulle S. Neuromuscular Electrical Stimulation Induces Skeletal Muscle Fiber Remodeling and Specific Gene Expression Profile in Healthy Elderly. Front Physiol. 2019 Nov 27;10:1459. doi: 10.3389/fphys.2019.01459. PMID: 31827446; PMCID: PMC6890722.

    29. Di Filippo ES, Mancinelli R, Marrone M, Doria C, Verratti V, Toniolo L, Dantas JL, Fulle S, Pietrangelo T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J Appl Physiol (1985). 2017 Sep 1;123(3):501-512. doi: 10.1152/japplphysiol.00855.2016. Epub 2017 Jun 1. PMID: 28572500.

    30. Pigarev IN, Pigareva ML. Therapeutic Effects of Electrical Stimulation: Interpretations and Predictions Based on the Visceral Theory of Sleep. Front Neurosci. 2018 Feb 12;12:65. doi: 10.3389/fnins.2018.00065. PMID: 29483861; PMCID: PMC5816067.

    31. Chen, Y., Ye, L., Guan, L., Fan, P., Liu, R., Liu, H., Chen, J., Zhu, Y., Wei, X., Liu, Y., Bai, H., Physiological electric field works via the VEGF receptor to stimulate neovessel formation of vascular endothelial cells in a 3D environment. Biol Open, 7(9), 2018. 

    32. Hu, W.W., Chen, T.C., Tsao, C.W., Cheng, Y.C., The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. J Biomed Mater Res B Appl Biomater, 2018. 

    33. Rouabhia, M., Park, H., Meng, S., Derbali, H., Zhang, Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 8(8), 2013.

    34. Borgens R.B., Vanable J.W., Jaffe L.F., Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. J Exp Zool. 200(3), 1977. 

    35. Leppik L.P., Froemel D., Slavici A., Ovadia Z.N., Hudak L., Henrich D., Marzi I., Barker J.H., Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 5, 2015.

    36. McCaig C.D., Rajnicek A.M., Song B., Zhao M., Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3), 2005. 

    37. Latchoumane, C.V.,, Jackson, L.,, Sendi, M.S.E., Tehrani, K.F., Mortensen, L.J., Stice, S.L., Ghovanloo, M., Karumbaiah, L. Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons following Glutamate-induced Inhibition In vitro. Sci Rep, 8(1), 2018

    38. Petersen EA, Slavin KV. Peripheral nerve/field stimulation for chronic pain. Neurosurg Clin N Am. 25(4), 2014.

    39. Aplin, F.P., Singh, D., Delia Santina, C.C., Fridman, G.Y., Ionic direct current modulation for combined inhibition/excitation of the vestibular system. IEEE Trans Biomed Eng, 2018.

    40. Zehr, E.P., Collins, D.F., Chua, R., Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot. Exp Brain Res 140:495-504, 2001

    41. Clair, J.M., Anderson-Reid, J.M., Graham, C.M., Collins, D.F., Postactivation depression and recovery of reflex transmission during repetitive electrical stimulation of the human tibial nerve. J Neurophysiol 106: 184-192, 2011 

    42. Clair, J.M., Okuma, Y., Misiaszek, J.E., Collins, D.F., Reflex pathways connect receptors in the human lower leg to the erector spinae muscles of the lower back. Exp Brain Res 196:217-227, 2009

    43. Kitago, T., Mazzocchio, R., Liuzzi, G., Cohen, L.G., Modulation of H-reflex excitability by tetanic stimulation. Clin Neurophysiol 115: 858-861, 2004

    44. Hamdy, S., Rothwell, J.C., Aziz, Q., Singh, K.D., Thompson, D.G., Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neurosci 1: 64-68, 1998

    45. Ridding, M.C., Brouwer, B., Miles, T.S., Pitcher, J.B., Thompson, P.D., Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131(1): 135-43, 2000

    46. Kalisch, T., Tegenthoff, M., Dinse, H.R., Repetitive electric stimulation elicits enduring improvement of sensorimotor performance in seniors. Neural Plast 2010:690351, 2010

    47. Charlton, C.S., Ridding, M.C., Thompson, P.D., Miles, T.S., Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci 208: 79-85, 2003

    48. Collins, D.F., Burke, D., Gandevia, S.C., Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol 538.1: 289-301, 2002

    49. Dean, J.C., Yates, L.M., Collins, D.F., Turning on the central contribution to contractions evoked by neuromuscular stimulation. J Appl Physiol 103: 170-176, 2007

    50. Stackhouse S.K., Taylor C.M., Eckenrode B.J., Stuck E., Davey H., Effects of Noxious Electrical Stimulation and Eccentric Exercise on Pain Sensitivity in Asymptomatic Individuals. PM R, 8(5), 2016.

    51. Fujii-Abe K, Umino M, Fukayama H, Kawahara H., Enhancement of Analgesic Effect by Combination of Non-Noxious Stimulation and Noxious Stimulation in Humans. Pain Pract, 16(2), 2016. 

    52. Eckenrode BJ, Stackhouse SK., Improved Pressure Pain Thresholds and Function Following Noxious Electrical Stimulation on a Runner with Chronic Achilles Tendinopathy: a Case Report. Int J Sports Phys Ther, 10(3), 2015. 

    53. Galloway, M.T., Lalley, A.L., Shearn, J.T., The role of mechanical loading in tendon development, maintenance, injury, and repair. J Bone Joint Surg Am, 95(17), 2013. 

    54. Kaux J.F., Libertiaux V., Leprince P., Fillet M., Denoel V., Wyss C., Lecut C., Gothot A., Le Goff C., Croisier J.L., Crielaard J.M., Drion P., Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. Am J Sports Med, 45(6), 2017. 

    55. Geremia, J.M., Baroni, B.M., Bobbert, M.F., Bini, R.R., Lanferdini, F.J., Vaz, M.A., Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol, 118(8), 2018.  

    56. Paillard T. Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Med. 2008;38(2):161-77. doi: 10.2165/00007256-200838020-00005. PMID: 18201117

Talk to a NeuFit specialist

Find a device or provider near you

bottom of page